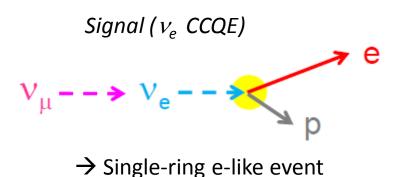
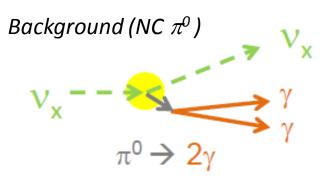
π^0 rejection with POLfit in SK

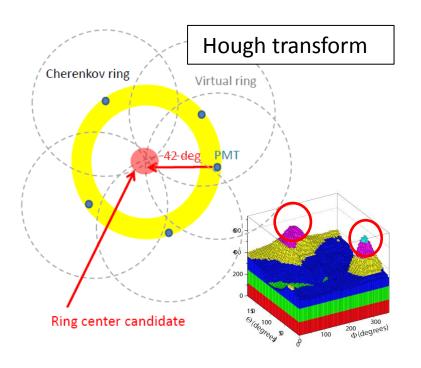

Kimihiro OKUMURA (ICRR, Univ. of Tokyo)
Oct. 12th 2011
ANT'11 workshop

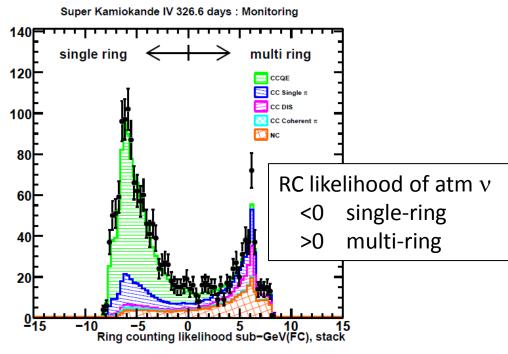

Introduction

- POL (Patten Of Light) fit
 - Specialized event reconstruction tool to discriminate π^0 background from electron neutrino events using charge pattern of Cherenkov rings
 - Developed in Super-K atmospheric v analysis, and also utilized in K2K/T2K v_e search
 - Will explain algorithm and performance in this talk
- Calibration of π^0 rejection efficiency in T2K
 - hybrid- π^0 control sample

What is π^0 background?

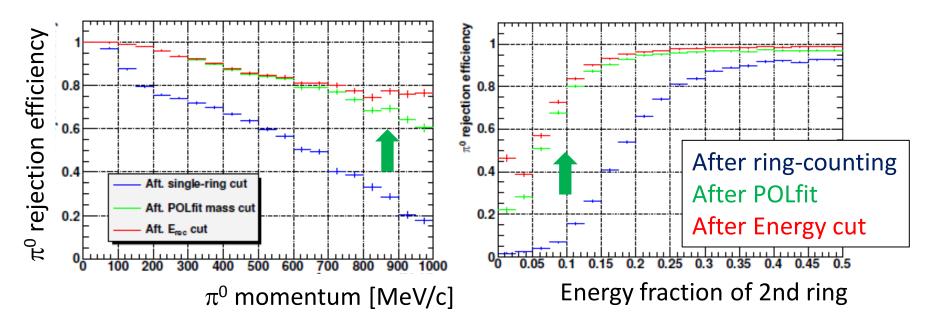
- Measurement of *CP violation* and *mass hierarchy* via $v_{\mu} \rightarrow v_{e}$ oscillation is one of motivations in Megaton WC detector
- Neutral-current induced π^0 is most significant background in ν_e oscillation analysis
- Could be v_e CCQE signal-like if 2nd gamma ring is not identified
 - Reasons: smaller energy of 2nd gamma by asymmetric decay and overlapped rings
 - Both electron and gamma produce almost same charge pattern



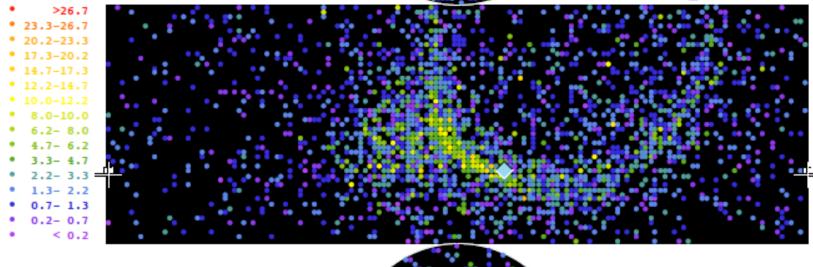

Purpose of POLfit

- Force to find 2nd gamma ring with two ring assumption
 - Use charge pattern and likelihood method
- Provide *kinematical variables* to identify π^0
 - Reconstructed invariant mass
 - π^0 pattern likelihood
- Reduce π^0 background events which cannot be identified by standard event reconstruction tool

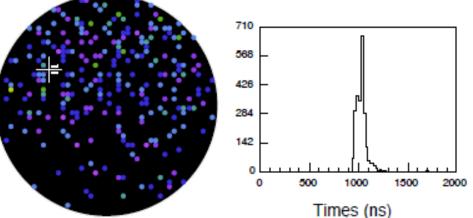
Ring-counting in std. reconstruction


- Std. event reconstruction: vertex, ring-counting, PID, momentum
- Ring-counting provides # of Cherenkov rings
- Pickup ring candidates indicated by Hough transform, and test by likelihood method

π^0 rejection by RC and POLfit

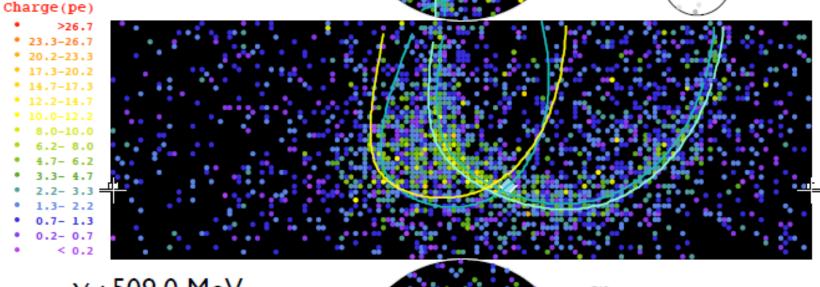

- POLfit can *significantly increase* π^0 rejection efficiency
 - $\sim 80\% \rightarrow \sim 95\%$ for $P(\pi^0) = 200 \text{ MeV/c}$
 - $\sim 60\% \rightarrow \sim 85\%$ for $P(\pi^0) = 500$ MeV/c
- Also large improvement for asymmetric-decay π^0 events having smaller 2nd ring energy

Super-Kamiokande III

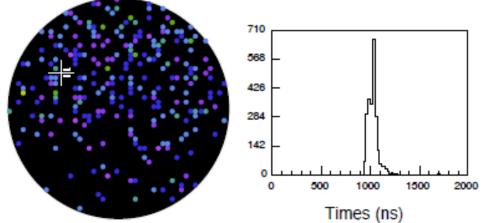

Run 999999 Sub 0 Event 1292 08-04-16:23:11:48 Inner: 2921 hits, 5515 pe Outer: 1 hits, 0 pe Trigger: 0x03 D_wall: 663.4 om e-like, p = 579.1 MeV/o

Charge(pe)

$$v + p \rightarrow v + p + \pi^0$$


An Example

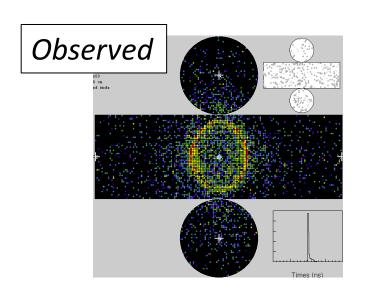
Super-Kamiokande III

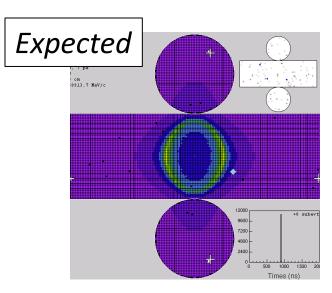

Run 999999 Sub 0 Event 1292 08-04-16:23:11:48 Inner: 2921 hits, 5515 pe Outer: 1 hits, 0 pe Trigger: 0x03 D_wall: 663.4 om e-like, p = 579.1 MeV/o

POLfit π^0 mass: 133.2 MeV

γ₁: 509.0 MeV γ₂: 64.3 MeV 2nd γ frac: 11%

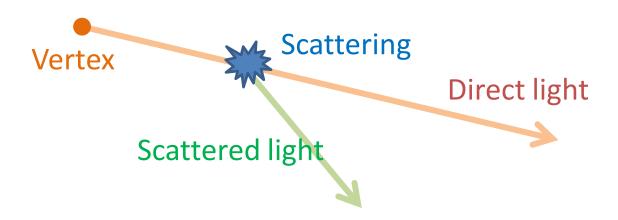
Found e-like ring True gamma ring POLfit ring

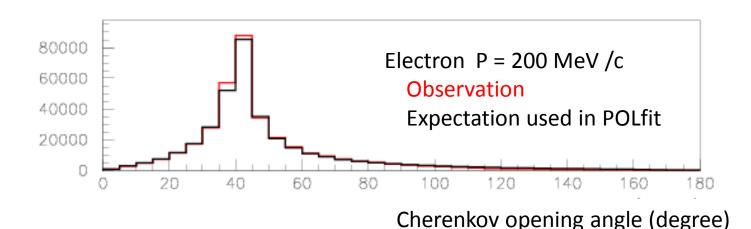



POLfit algorithm

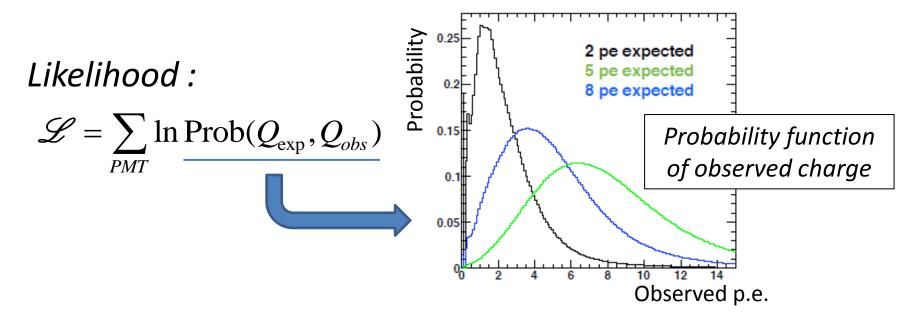
- INPUT: one found ring direction, vertex, and total charge (given by std. reconstruction)
- 2. Assuming there should be *two gamma rings*, search for a second ring
- 3. Assuming 2nd ring direction and energy, *generate expected light pattern* of 2-ring event.
- 4. Compare this pattern to observed. This is iterated until optimal 2nd ring location and energy are found.
- 5. Return π^0 invariant mass from optimal values
- Also do comparison with 1R e-like assumption, and return *likelihood* difference between 1R e-like and 2R π^0 -like.

Expected Cherenkov pattern


- Expected charge pattern can be generated with inputs of vertex, direction, energy, particle-ID
- Expected light consists of direct light and scattered light
- Direct light: *look up table* (generated from MC) by PID, momentum, distance to PMT, $\cos\theta$ (Cherenkov opening angle)

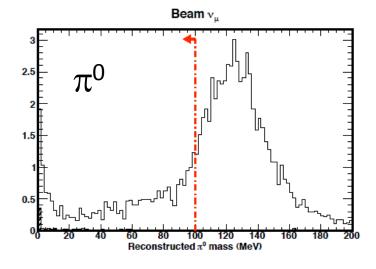

Scattering light calculation

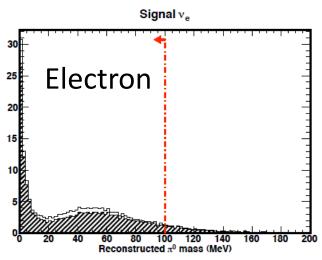
- Along a path of direct light from vertex, scattering is calculated and its amount is integrated
- This integration is done for all direct light directions
- Attenuation in water and scattering angle are considered
- Calculation is based on coarse "patch" group


Expected light: Comparison with observation

- Some correction are made for solid angle of PMT
- After adding direct and scattered lights, expected charge is normalized to observed charge
- Angle distributions between observation and expectation well agree

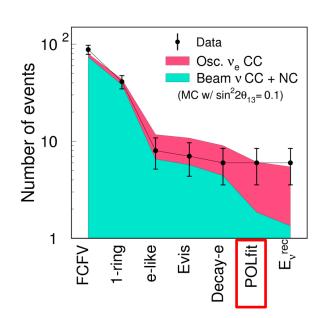
POLfit Likelihood

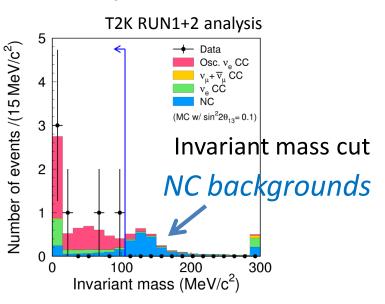

- For each expected light pattern, a likelihood is generated by comparing that pattern to the observed pattern.
- Probability function based on measured single photo electron distribution of real PMT is used
- This likelihood function is fed into MINUIT minimizer



POLfit output

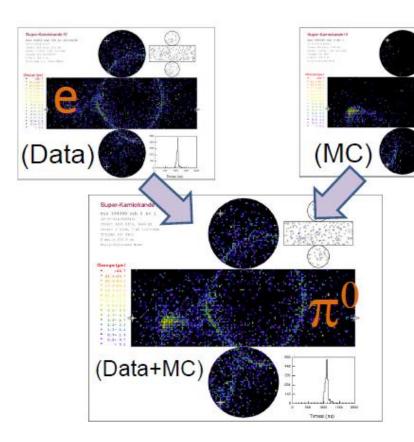
- After minimization, momentum of both two rings and 2nd gamma direction are obtained
- Invariant mass is constructed using this output. This is used as discrimination parameter between electron and π^0
- Backgrounds have a peak around π^0 mass (~135MeV). Can reject them by <~100 MeV/c cut.

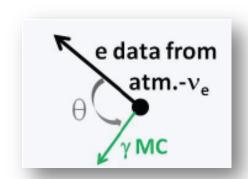

Reconstructed invariant mass by POLfit



POLfit performance in T2K analysis

- Invariant mass cut is applied after 1-R e-like selection
 - Optimize cut criteria by MC: $M_{inv} < 105 \text{ MeV/c}^2$
- Significant reduction for NC backgrounds
 - ~95% π^0 rejection, 66% signal acceptance achieved by all cuts
- NC π^0 is no more most significant background
 - amount of NC BG is less than beam intrinsic v_e in T2K




Calibration of π^0 efficiency (hybrid- π^0 sample)

Calibration of π^0 rej. efficiecy

- Need to verify/confirm POLfit performance and estimate systematic error of π^0 background
- There are many possible syst. error sources
 - Any component affecting charge pattern could be error source
 - EM shower simulation, Cherenkov light emission, scattering/absorption in water, reflection on PMT surface, PMT QE, gain, electronics, etc.
- Difficult to control all these uncertainties by MC-based study
- Solution: Control sample based study using data
 - Data/MC difference includes all these uncertainties
 - But we don't have π^0 calibration data ...

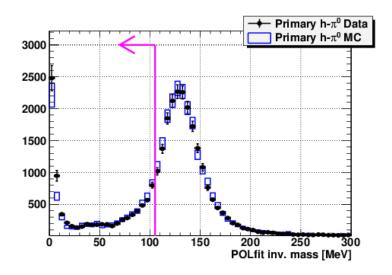
Hybrid- π^0

Composite event sample with *electron data* and *gamma MC*

Electrons are taken from atm. ν and cosmic Michel electron

Can estimate *systematic uncertainty* coming from ring where electron is used

Apply T2K v_e selection and *compare cut efficiency* between control sample data and its MC


18

Hybrid- π^0 : Generation

- Produce with *same kinematics* (energy, dir.) as T2K's π^0
 - Pick up a NC $\pi^0 \rightarrow 2\gamma$ vectors from T2K MC, and choose electron event which energy is close to one gamma vector
 - Allow to rotate vector coordinate around SK detector axis in order to match opening angle from beam dir.
 - Generate gamma MC with electron's vertex. Direction and energy are taken from another gamma vector in rotated coordinate
 - Combine electron event and gamma MC
- Data/MC sample
 - $(e \ data) + (\gamma MC) \leftarrow \rightarrow (e \ MC) + (\gamma MC)$
 - Selection efficiency difference → systematic error
- Primary and secondary sample
 - Need to estimate uncertainties coming from both rings
 - Primary: use electron for higher energy ring, secondary: lower ring

Hybrid- π^0 : Result

Invariant mass of h- π^0 Data/MC

Data/MC diff. after cut selection: 7.8 % in primary sample 4.3 % in secondary sample by taking quad. sum, 10.8% error estimated for amount of π^0 BG (considering stat. uncertainty of sample)

Far detector (SK) systematics in T2K v_e analysis

Error source	$\frac{\delta N^{MC}_{SK\ \nu_e\ sig.}}{N^{MC}_{SK\ \nu_e\ sig.}}$	$rac{\delta N_{SK~bkg.~tot.}^{MC}}{N_{SK~bkg.~tot.}^{MC}}$
π^0 rejection	-	3.6%
Ring counting	3.9%	8.3%
Electron PID	3.8%	8.0%
Invariant mass cut	5.1%	8.7%
Fiducial volume cut etc.	1.4%	1.4%
Energy scale	0.4%	1.1%
Decay electron finding	0.1%	0.3%
Muon PID	-	1.0%
Total	7.6%	15%

In total background (intrinsic v_e , NC, others), 3.6% uncertainty is estimated from π^0 rejection efficiency

Summary

- We have been studying π^0 backgrounds for precise measurement of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation
- POLfit is a powerful tool for π^0 background rejection in ν_e appearance search
 - Optimal 2nd ring direction is searched by Likelihood method comparing with expected light pattern
 - Reconstructed invariant mass is used as a discrimination parameter between electron and π^0
 - Significant improvement after standard ring-counting tool
- Developed new control sample for π^0 efficiency calibration (hybrid- π^0)
 - Composite event with electron data and gamma MC
 - ullet Estimate ~11% systematic error on π^0 background